Appendices

Appendix A: Syllabus Design Guidelines
Designing your Course Syllabus

Instructors are required to develop a syllabus for each course and to provide it to students during the first week of class. A syllabus is a contract between the instructor and students. It is important that instructors review syllabi with students. Instructors are also encouraged to post syllabi on their faculty websites as well as on Blackboard.

Purpose of a Syllabus

A clear, well-organized course syllabus serves several important purposes:
- It informs your students about important aspects of your class, where and when the class meets, how to reach the instructor, etc.;
- It organizes and outlines the material to be taught and what students can expect to learn;
- It contains important policy information for students regarding attendance, assignments, grading, textbooks, exams, etc.;
- It helps students stay organized and plan ahead, thus optimizing their chances for college success.

Essential Syllabus Elements

Use the checklist below to ensure that your syllabus contains all essential syllabus elements.

<table>
<thead>
<tr>
<th>Essential Syllabus Elements Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General Class Information</td>
</tr>
<tr>
<td>☐ College course number and title</td>
</tr>
<tr>
<td>☐ Meeting dates and times</td>
</tr>
<tr>
<td>☐ Classroom number</td>
</tr>
<tr>
<td>☐ Year and semester</td>
</tr>
<tr>
<td>B. Instructor Information</td>
</tr>
<tr>
<td>☐ Your name</td>
</tr>
<tr>
<td>☐ Your office number and office hours</td>
</tr>
<tr>
<td>☐ Your contact information (phone, e-mail)</td>
</tr>
<tr>
<td>C. Course Description</td>
</tr>
<tr>
<td>☐ Course description as listed in college catalog</td>
</tr>
<tr>
<td>☐ Description of the purpose and scope of the course</td>
</tr>
<tr>
<td>☐ Description of how learning will take place</td>
</tr>
</tbody>
</table>
Essential Syllabus Elements Checklist

D. Student Learning Outcomes (SLOs)	□ A bulleted list of 5-10 statements/objectives reflecting what students can expect to learn in the course
D. Student Learning Outcomes (SLOs)	□ Include how these SLOs are measured
D. Student Learning Outcomes (SLOs)	□ For more information on the incorporation of SLOs for your course, see the official course outline, which is available from the department chair.
E. Textbook and supplies needed	□ Title of textbook, including authors, year, edition, and where it can be acquired
E. Textbook and supplies needed	□ Where to obtain class supplies
E. Textbook and supplies needed	□ What to bring to class
E. Textbook and supplies needed	□ How to access Blackboard, if applicable
F. Class schedule	□ Due dates for major assignments and exams
F. Class schedule	□ Drop dates and other important deadlines
F. Class schedule	□ Day-to-day agenda for topics, activities, focus
F. Class schedule	□ Homework, readings, how to prepare for class
G. Grading and Assessment	□ List of grading methods (number of exams and assignments, consistent with SLOs)
G. Grading and Assessment	□ List of grading categories (papers, participation, etc.)
G. Grading and Assessment	□ Division of points
G. Grading and Assessment	□ Correspondence of points to letter grades
G. Grading and Assessment	□ Exam, assignment, quiz, late-, and make-up policies
H. Requirements	□ If applicable, prerequisites to take the course
H. Requirements	□ Necessary skills to take the course (e.g., proficiency with Blackboard, e-mail)
H. Requirements	□ Other materials and resources students should be able to use and/or have access to
I. Clear Formatting and Appearance	□ Make your syllabus easy to read (font, font size)
I. Clear Formatting and Appearance	□ Use headings and page numbers
I. Clear Formatting and Appearance	□ Leave space for student notes

Additional Elements

Additional elements may include: listing full course assignments and their sequence; recommendations for study habits appropriate for your course; a general grading scale with grade
point values as seen below; directions to where to find support and assistance with course work (e.g., writing center, tutoring services); available accommodations for students with disabilities; rules regarding plagiarism, academic dishonesty, and intellectual property; an honor code or and/or behavioral guidelines; teacher expectations; rules with regards to attendance; a contract of agreement for your students to sign with regards to responsibility, behavior, and policies; and some words of encouragement to help with student motivation and confidence.

Letter Grade Values

Instructors have the option to assign the following grade symbols (shown with the assigned grade point value) using a plus-minus system as follows:

- A+ = 4.0
- A = 4.0
- A- = 3.7
- B+ = 3.5
- B = 3.0
- B- = 2.7
- C+ = 2.3
- C = 2.0
- D = 1.0
- F = 0.0

Example Syllabi: See below or [click here](#).

Syllabus –Math 180 – Analytic Geometry & Calculus I

Cuyamaca College: Fall 2012
Tammi Marshall, Ed.D.

“If you can imagine, then you can achieve”... PROMISES®

Section 9789
TTh 12:30 – 2:50 pm
Room H-127
5 units

Office & Phone:
H-115
619-660-4284

Email: tammi.marshall@gcccd.edu
Web: http://bb.gcccd.net
Office Hours:
Tuesday 11:00 am – 12:15 pm
Thursday 11:00 am – 12:15 pm
By Appointment

Course Description:

Graphic, numeric and analytic approaches to the study of analytic geometry, limits and continuity of functions, and introductory differential and integral calculus. Applications involving analysis of algebraic, exponential, logarithmic, trigonometric and hyperbolic functions from a variety of disciplines including science, business and engineering. First of three courses designed to provide serious science students with a solid introduction to the theory and techniques of analysis.

Prerequisites:

Math 176 or Math 170 & Math 175 with a grade of C or better.

Materials:

Stewart, James; *Single Variable Calculus: Early Transcendentals, 7th* Edition plus Enhanced WebAssign. The class key for this section of Math 180 is **cuyamaca 7175 6654** (yes there are
A scientific calculator and graphing calculator are required. The Mathematics Department of Cuyamaca College highly recommends Texas Instruments graphing calculators. For this course I recommend the use of a TI-84 Plus, TI-89 or Voyage 200 graphing calculator.

Important Dates:
- August 31 (Friday): Last day to drop without a “W” on your transcripts & receive a refund
- August 31 (Friday): Last day to add a class
- November 8 (Thursday): Last day to drop a class
- December 19 or before: Grades available by accessing WebConnect

You can see the Fall 2012 academic calendar in its entirety at http://www.cuyamaca.edu/cc/calendarF12.asp

Tutoring:
If you feel you need more help than I or other classmates can offer there is free tutoring available in the STEM Achievement Center. You may earn extra credit on the final exam (one-half of a grade level) by studying Calculus in the STEM Achievement Center for approximately 3 hours per week (45 hours total). You must log in and out each time you use the STEM Center regardless of the hours you have accumulated (this is for state reporting). The hours of the STEM Center are Monday 9 am – 3 pm; Tuesday 9 am – 7 pm; Wednesday 9 am – 7 pm; Thursday 9 am – 3 pm and Friday 9 am - noon.

Additional Support:
You have a Blackboard account for Math 180 with links to the syllabus and all handouts. In addition, I encourage you to have discussions within Blackboard collaborating with each other. Please visit http://www.cuyamaca.edu/helpdesk/ and use the gray menu pane on the left to check your browser’s compatibility and that necessary plug-ins are installed on your computer at home.

Homework/Quizzes:
It is imperative that you read the material in your textbook before it is covered in class and complete the homework assignments in a timely and responsible manner making sure you are prepared to discuss the homework in class. Homework will be assigned using WebAssign. You can ask for up to two extension requests for the semester for homework assignments (no more). There will also be Quizzes periodically in class or on WebAssign as well...there are no make ups for quizzes. Your two lowest homework and one lowest quiz will be dropped.

Group Works:
Throughout the semester I will assign Group Works. You are encouraged to work together on the Group Works and turn in one paper for the group. The points for each assignment will be different depending upon the length and complexity of the assignment.

Exams:
Expect four “two-part” exams. Each exam will consist of a take-home portion and an in-class portion. No makeups, but I will drop your lowest exam. You will be allowed to use a graphing calculator on most of the exams. The exams will consist of problems similar to our class discussions and the
homework assignments as well as "concept" problems that require you to "synthesize" the material learned and relate it to the topics covered.

After each in-class exam is handed back (with the exception of one), you have the opportunity to redo any of the problems in which you missed points. This must be done on separate paper and turned in with your original exam. Based on the correctness of your revisions you can raise your in-class exam score 10%.

Final Exam:
The comprehensive final exam is scheduled for Tuesday, December 11, 2012 from 12:00 to 2:30 pm.

Evaluation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>25%</td>
</tr>
<tr>
<td>Homework & Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Group Works</td>
<td>25%</td>
</tr>
<tr>
<td>Group (Video) Project</td>
<td>15%</td>
</tr>
<tr>
<td>Final examination</td>
<td>20%</td>
</tr>
</tbody>
</table>

A Plus/Minus grading system will be used for final grades. A (Above 90%); B+ (87% - 89.9%); B (80% - 86.9%); C+ (77% - 79.9%); C (70% - 76.9%); D (60% - 69.9%); F (below 60%)

Any students seeking an "I" (incomplete) for a grade must file a petition with me citing "unforeseeable, emergency, and justifiable" reasons for this grade.

Student Learning Outcomes:

Students will be able to:

1) Evaluate:
 a) finite limits as \(x \) approaches \(a \),
 b) infinite limits, and
 c) limits at infinity.

2) Apply the definition of continuity of a function to:
 a. Find intervals of continuity
 b. Find points of discontinuity

3) Define and evaluate the derivative both graphically as the slope of the tangent line to the graph of a function at a point and numerically as a limit of difference quotients.

4) Determine if a function is differentiable.

5) Use differentiation to solve application problems involving velocity and acceleration.

6) Identify and apply formulas for derivatives of common functions including:
 a. power,
 b. exponential,
 c. trigonometric, and
 d. inverse trigonometric functions.

7) Identify and apply rules for differentiation including:
 a. the product rule,
 b. the quotient rule,
 c. the chain rule, and
 d. implicit differentiation.

8) Find and interpret:
 a) local maximum and minimum values,
b) intervals of increase and/or decrease,
c) intervals of concavity, and
d) inflection points.

9) Use the methods of calculus to graph a function.
10) Solve application problems requiring the use of the derivative including the effect on economic applications and optimization.
11) Evaluate:
 a) definite integrals, and
 b) indefinite integrals.
12) Identify the definition of the definite integral as the limit of Riemann sums.
13) Evaluate and interpret the integral as:
 a) the area under a curve, and
 b) the area between two curves.
14) Use the definite integral to solve application problems involving distance traveled and average value of a function.

Food Policy:
- You may have drinks in class as long as it is in a container that can be closed tightly and is not likely to spill if dropped. I encourage you to use your own reusable drink container for class.
- Generally speaking no food is allowed during class time. You may have food with you to snack on in the classroom during breaks, but I do not want the distraction of food during class.
- Be aware that NO drinks or food are allowed in any computer lab and upstairs in Science labs. In addition, only water is allowed in the STEM Achievement Center.

Class Policies:
- All cell phones must either be turned off or put on vibrate during class time. They are not allowed on desks or in your pockets during exams.
- Math is not a spectator’s sport. A student may be dropped for four or more absences but the student is ultimately responsible for officially withdrawing from the course. If absences become a problem, please come and speak with me.
- If you are caught cheating or plagiarizing, you will earn a ‘0’ on that assignment. If it happens a second time, you will earn a ‘0’ on that assignment and I will report the incident to the Student Affairs Office.
- You are responsible for getting class notes and any schedule changes or other announcements on days missed from the class. Any changes and announcements will be posted on Blackboard.
- You are expected to be courteous to each other and to the instructor. You will be asked to leave the class for display of behavior the instructor deems as disruptive to the learning environment.
- You are expected to work actively with your peers, sharing, taking and giving, listening and explaining, questioning and answering. You are responsible for being prepared for participation in class discussions and in group work, and for assisting your peers to come to an understanding of mathematics.
Math 180; Class Schedule
Fall 2012
T. Marshall

Week 1 (8/20 – 8/24) — Introduction, Sections 2.1 – 2.2

Week 2 (8/27 – 8/31) — Sections 2.3 – 2.4

Week 3 (9/3 – 9/7) — Sections 2.5 – 2.6

Week 4 (9/10 – 9/14) — Sections 2.7 – 2.8

Week 5 (9/17 – 9/21) — Exam 1; Section 3.1; Project Group & Topic Due

Week 6 (9/24 – 9/28) — Sections 3.2 – 3.4

Week 7 (10/1 – 10/5) — Sections 3.5 – 3.6

Week 8 (10/8 – 10/12) — Exam 2; Sections 3.6 – 3.7

Week 9 (10/15 – 10/19) — Sections 3.9, 3.11

Week 10 (10/22 – 10/26) — Sections 4.1 – 4.3; Project Progress Report Due

Week 11 (10/29 – 11/2) — Exam 3; Sections 4.4, 4.7

Week 12 (11/5 – 11/9) — Sections 4.9, 5.1

Week 13 (11/12 – 11/16) — Sections 5.2 – 5.4

Week 14 (11/19 – 11/23) — No Class Thursday, 11/22 (Thanksgiving); Exam 4; Section 5.5

Week 15 (11/26 – 11/30) — Sections 5.5, 6.1

Week 16 (12/3 – 12/7) — Project Presentations; Review

Final Exam Tuesday, December 11, 12:00 noon – 2:30 pm
OR
Wednesday, December 12, 1:00 – 3:30 pm

Any information above may change at the discretion of the instructor at any time. This course adheres to the policies outlined in the Cuyamaca College catalogue. For further information, see Academic Policies stated in the catalogue.