

#14

COMPLETE

Collector: Web Link 1 (Web Link)
Started: Saturday, January 10, 2026 11:08:08 PM
Last Modified: Sunday, January 11, 2026 1:16:09 PM
Time Spent: 14:08:00
IP Address: 75.25.163.251

Page 1: Classified Position Request Form

Q1

Please enter the following:

Department	Engineering & Physical Sciences (Physics, Astronomy, Earth Science)
Position Title	Natural Sciences Laboratory Technician III
Salary Range*	36
Annual Salary at Step B*	\$62,928
Hours/week and # of months (e.g., 10-month, 11-month, 12-month)	40 hours, 12 months

Q2

Current program goal (as listed in comprehensive program review/annual update) this position will directly advance/support:

Physics & Astronomy - Rewrite and align online laboratories with in-person laboratories to ensure high-quality, equitable, and transfer-aligned laboratory experiences across instructional modalities. Earth Sciences (Geography, Geology, Oceanography) - Sustain and expand recent enrollment growth by increasing in-person offerings, supporting laboratory- and field-based instruction, and maintaining consistent instructional quality across in-person and online formats.

Q3

How will this position directly advance/support the goal listed above?

Changing the current position from Science Laboratory Technician II to Science Laboratory Technician III directly supports the program review goals by aligning the position with the actual technical scope, independence, and leadership now required (and currently being performed) to support Physics, Astronomy, and Earth Sciences.

A Science Laboratory Technician III provides capabilities that exceed the Tech II level, including independent setup, calibration, troubleshooting, and repair of complex physics and earth science equipment such as optics systems, digital oscilloscopes, data-acquisition platforms, telescopes, spectrometers, and field-based geoscience instrumentation. The position supports multi-week, inquiry-based laboratories across in-person, hybrid, online, and field formats, which require parallel equipment systems, advanced diagnostics, and proactive maintenance.

The Tech III classification also carries responsibility for extremely necessary laboratory safety and regulatory compliance, including OSHA/Title 8 requirements, laser and radiation safety, hazardous materials handling, and physical risk management. In addition, a Tech III provides technical leadership by supervising Science Lab Technician IIs and student workers, coordinating laboratory operations across multiple sections (including evening astronomy labs), and supporting equipment purchasing, inventory control, and budget planning.

These duties directly advance program goals to align online and in-person labs, sustain enrollment growth, and maintain safe, high-quality laboratory and field instruction. They fall beyond the scope of a Tech II, whose role is limited to routine preparation and maintenance under close supervision.

Q4

What type of position is being requested?

Increase in the FTE for the position, specify the position classification and number::

This request is not for a new position and not for a vacant or replacement hire. It requests changing the current, filled Science Laboratory Technician II (32) position to Science Laboratory Technician III (36) to align the classification with the duties already being performed and required for safe, effective operation of Physics, Astronomy, and Earth Science laboratories. Increase in the FTE for the position, specify the position classification and number: No increase in FTE. One existing position changing from Science Laboratory Technician II (32) to Science Laboratory Technician III (36) Rationale and cost differential The incumbent in this position is already independently performing Tech III-level duties, including advanced equipment calibration and repair, laboratory safety and regulatory compliance, supervision of technicians and student workers, coordination of complex lab operations, and technical support essential to instruction. These responsibilities are necessary to maintain student safety, instructional quality, and regulatory compliance, and they exceed the scope of a Tech II classification. Changing the classification reflects the actual work required and already occurring, rather than expanding scope or staffing. Based on the current CSEA salary schedule, the annual cost differential between Science Laboratory Technician II and III at Step B is modest (approximately one range increase, on the order of several thousand dollars annually) and represents a significantly lower cost than adding a new position, while reducing institutional risk and sustaining instructional quality. This change ensures the college remains safe, compliant, and effective in teaching high-risk, lab-intensive STEM courses, without increasing headcount.

Q5

Please attach the description for the position classification (job descriptions are posted on this GCCCD Human Resources webpage).

36%20-%20SCIENCE%20LAB%20TECHNICIAN%20III.docx (27KB)

Q6

What are the actual duties and responsibilities that are specific to this requested position that you would like to highlight to help the Classified Hiring Priorities Committee understand the need for this position? How does the lack of this position impact the program's or service area's ability to serve students? (300 words or less)

Over the past decade, Engineering & Physical Sciences has experienced substantial, sustained growth in enrollment alongside significant changes in instructional scope, safety requirements, and technical complexity. From Spring 2016 to Spring/Fall 2024–25, combined enrollment in Physics, Astronomy, and Earth Sciences increased from approximately 575 students per term to over 900 students per term, representing nearly 60% growth. Physics alone grew from 244 students in Spring 2016 to 445 students in Spring 2025 (+82%), while Astronomy increased from 134 to 209 students (+56%). Earth Sciences expanded later but rapidly, growing from a combined 197 students in 2016 (Geography and Oceanography) to 254 students in Fall 2024, as in-person labs and field components were restored.

This growth has occurred while the department has retained the same single Science Laboratory Technician II position that existed ten years ago, despite laboratory offerings expanding from approximately 6–8 labs per semester to 19–21 labs per semester. By comparison, Grossmont College staffs a full Science Laboratory Technician III dedicated solely to Physics and Astronomy—despite fewer in-person lab sections and lower overall enrollment in those disciplines—and employs a separate technician for Earth Science. Cuyamaca's staffing and classification model is therefore misaligned with both enrollment realities and district practice.

In parallel with enrollment growth, health, safety, and regulatory obligations have increased substantially. Modern Physics and Earth Science labs now require compliance with expanded OSHA/Cal-OSHA Title 8 regulations, including laser safety standards (ANSI Z136), radiation safety and sealed source tracking, electrical safety for high-voltage equipment, chemical hygiene requirements, ergonomics, and increased documentation and training mandates. Earth Science labs additionally involve risk management for field activities, including equipment transport, site safety, and environmental hazards. These responsibilities require independent judgment, advanced technical expertise, and proactive safety planning that exceed the scope of a Technician II classification.

Curriculum and pedagogy have also evolved. Physics growth was driven by a shift toward multi-week, inquiry-based laboratory instruction, alignment across in-person and online modalities, and expanded use of advanced instrumentation and data-acquisition systems. Earth Sciences are now undergoing the same transition following the hire of a new full-time faculty member who is rebuilding lab-, field-, and GIS-intensive curriculum. Instruction increasingly relies on complex instrumentation, GIS and spatial analysis tools, ecological aquariums and terrariums, field sampling equipment, and parallel lab setups across modalities.

Q7

* How are the duties of the requested position currently being performed, if at all?

All duties associated with a Science Laboratory Technician III are currently being performed by the existing Science Laboratory Technician II, supplemented by a rotating group of short-term student workers. The incumbent technician independently manages advanced laboratory setup, calibration, maintenance, safety compliance, and troubleshooting across Physics, Astronomy, and Earth Sciences, including responsibilities that now require technical judgment, regulatory knowledge, and instructional coordination beyond the scope of the Technician II classification.

Student workers assist only with limited, routine tasks under direct supervision and cannot perform safety-critical, regulatory, or technical functions. Core responsibilities—including laboratory safety compliance, equipment diagnostics and repair, nighttime astronomy lab logistics, field-based Earth Science preparation, supervision and training of student workers, coordination with faculty (predominantly part-time), and management of complex instructional equipment—rest entirely on the single classified position.

Because the position is underclassified, these duties are being carried out without appropriate classification, compensation, or staffing redundancy, creating a single point of failure. Coverage gaps occur during absences, peak lab weeks, or when instructional demands overlap, resulting in delayed maintenance, constrained scheduling, and increased risk to instructional continuity and safety.

In short, the work of a Science Laboratory Technician III is already occurring daily, but it is being absorbed into an outdated Technician II role that no longer reflects the scope, autonomy, technical complexity, or supervisory responsibilities required to safely and effectively support current programs. We should realistically have an additional, at least part-time Technician II in addition to changing this role to a Technician III.

Q8

* OPTIONAL: If duties are being performed by a grant-funded position, when will the grant end?

n/a

Q9

Program or Service Area Potential for GrowthPlease describe how the program/department has changed over the past 3 to 5 years and how this position will help the department serve more students directly or indirectly?- How has the demand for program/department services increased/changed over the past 3 to 5 years?- How have workloads in the program/department increased/changed over the past 3 to 5 years?- How many more students will the position serve, and who will it serve?**Please use both quantitative and qualitative data including, but not limited to: details of a newprogram, service, or initiative; number of students served; number of appointments; number ofvisits; number of workshops; total overtime/comp time accrued, number ofhourly/intern/volunteer/work study in program/service area and services provided.**(200 words or less) (Rubric Criterion 2)

Over the past 3–5 years, Engineering & Physical Sciences has experienced sustained enrollment growth driven by intentional, equity-centered instructional redesign, alongside a significant increase in technical workload across Physics, Astronomy, and Earth Sciences. This growth did not result from lowering rigor; it came from SEED-informed curriculum revisions, Zero-Textbook-Cost (ZTC) pathways, redesigned laboratory pedagogy, and high-use HyFlex and online laboratory models—particularly in Physics—that improved access, persistence, and completion while maintaining transfer alignment.

As a result, Spring headcount across Physics, Astronomy, Oceanography, and Geology increased from 590 students in Spring 2021 to 806 students in Spring 2025 (+37%). Physics grew from 289 to 445 students (+54%), Astronomy from 166 to 209 (+26%), and Oceanography from 99 to 131 (+32%) over the same period. Importantly, this growth occurred while the department rebuilt in-person laboratories without losing enrollment, demonstrating that equitable, flexible design is now a core driver of demand rather than a temporary pandemic response.

Workload has increased faster than headcount. Laboratories have shifted from short, procedural activities to multi-week, inquiry-based experiments, supported across in-person, HyFlex, online, and field-based modalities. This model requires parallel equipment systems, advanced calibration, diagnostic troubleshooting, learning-management integration, and continuous maintenance—responsibilities that exceed the scope of a Science Laboratory Technician II.

The department is now entering a planned expansion phase in Earth Sciences, where growth is expected to accelerate rather than stabilize. A newly hired full-time Earth Science faculty member is actively revising curriculum and rebuilding programs around laboratory-, field-, and GIS-based instruction, including spatial analysis, environmental monitoring, ecological sampling, and climate and ocean systems modeling. These courses rely on field instrumentation, GIS software platforms, complex aquaria and terraria, and data-driven lab workflows, substantially increasing technical, safety, and compliance demands. These changes mirror the same equity-driven instructional strategies that successfully generated growth in Physics and are expected to produce similar results in Earth Sciences. The curricular direction aligns directly with regional and national workforce trends. According to the U.S. Bureau of Labor Statistics, employment in geosciences, environmental science, and engineering-related fields is projected to grow faster than average, with strong demand for skills in GIS, spatial analysis, environmental monitoring, and data-driven decision-making
<https://www.bls.gov/ooh/life-physical-and-social-science/geoscientists.htm>
<https://www.bls.gov/ooh/architecture-and-engineering/home.htm>

Health and safety responsibilities in California community college instructional laboratories have expanded substantially over the past decade under federal OSHA standards and California Code of Regulations, Title 8, particularly in lab environments where students directly handle chemicals, lasers, radiation-producing equipment, biological systems, aquaria and terraria, and field instrumentation. Current requirements include maintaining Chemical Hygiene Plans (29 CFR §1910.1450), implementing Hazard Communication programs and documentation (29 CFR §1910.1200), ensuring laser and radiation safety compliance (Cal/OSHA Title 8 §§1801, 30100–30255), and administering Injury and Illness Prevention Programs with documented training and corrective actions (Title 8 §3203).

Under the Science Laboratory Technician II classification, duties are primarily task-based and performed under close instructional direction, such as preparing materials, setting up standard laboratory exercises, and assisting with routine equipment use. In contrast, the Science Laboratory Technician III classification explicitly includes independent technical judgment, responsibility for regulatory compliance, development and maintenance of safety protocols, coordination with Environmental Health & Safety, oversight of training for faculty and student workers, and authority to identify, mitigate, and document hazards across multiple laboratories and instructional

modalities.

In Physics, Astronomy, and Earth Sciences, these Tech III-level responsibilities are now routine and unavoidable due to increased equipment complexity, expanded in-person and field-based labs, and heightened regulatory scrutiny of instructional laboratories. These functions did not exist at the same scale when the Tech II classification was established and exceed the intended scope of that classification.

Compliance risk statement:

Without a properly classified technician performing these Tech III-level duties, the college faces elevated risk of regulatory citations, lab shutdowns, and liability exposure due to noncompliance with state and federal safety requirements in instructional laboratories.

District comparison further underscores the mismatch between workload and classification. Grossmont College assigns a full-time Science Laboratory Technician III exclusively to Physics and Astronomy, despite having fewer in-person lab sections and lower overall enrollment in those disciplines, and employs a separate technician for Earth Science. In contrast, Cuyamaca supports all Physics, Astronomy, and Earth Science laboratories with a single underclassified position. Looking ahead, enrollment management planning is intentionally targeting both traditional students and returning professionals as regional workforce needs evolve. The department is preparing curriculum that integrates GIS, applied data analysis, and AI literacy, including collaboration with a newly hired Computer Science faculty member to embed AI-supported analysis and ethical data practices into lab-based instruction. These developments align with regional labor market demand in geoscience, environmental science, engineering, and applied technology fields and are expected to further increase student demand.

Changing the current position from Science Laboratory Technician II to Science Laboratory Technician III aligns the classification with the actual technical leadership, safety responsibility, instructional complexity, and supervisory duties already being performed. Even with this change, additional staffing will likely be required to fully support continued growth. Aligning the classification is the minimum step necessary to safely sustain existing operations, implement planned expansion, and preserve the equitable, high-quality student experience that has driven enrollment growth across the disciplines.

References:

OSHA Laboratory Standard (29 CFR §1910.1450): <https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1450>

OSHA Hazard Communication Standard (29 CFR §1910.1200): <https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1200>

Cal/OSHA Injury and Illness Prevention Program (Title 8 §3203): <https://www.dir.ca.gov/title8/3203.html>

Cal/OSHA Radiation Safety Orders (Title 8 §§30100–30255): <https://www.dir.ca.gov/title8/sb5g2.html>

Cal/OSHA Laser Safety (Title 8 §1801): <https://www.dir.ca.gov/title8/1801.html>

Q10

Respondent skipped this question

Which of the College's strategic priorities will this position most directly support? Note: Selecting more than one strategic goal will not impact the Classified Hiring Priorities Committee rating of the position.

Q11

Please explain how the requested position will support the college strategic goal(s) identified above. (200 words or less) (Rubric Criterion 3)

Changing the current position from Science Laboratory Technician II to Science Laboratory Technician III directly advances the College's strategic priorities by stabilizing and sustaining equitable, high-quality laboratory instruction in Physics, Astronomy, and Earth Sciences—disciplines that serve large numbers of first-generation students, students of color, and returning professionals.

Equitable access, persistence, and completion in these fields depend on reliable, safe, and consistently supported laboratory experiences. Disruptions caused by equipment failure, safety noncompliance, or insufficient technical coverage disproportionately impact students in high-DFW gateway courses. A Tech III classification aligns the position with the independent technical judgment, regulatory oversight, and proactive maintenance now required to ensure laboratories operate consistently across in-person, HyFlex, online, and field-based modalities.

This alignment directly supports course success and persistence by preventing lab cancellations, shortening downtime, and ensuring that redesigned, equity-centered instructional models (SEED-informed pedagogy, ZTC pathways, and HyFlex labs) function as intended.

Correct classification also supports hiring and retention of diverse employees by aligning compensation, expectations, and authority with the actual work performed. This improves retention of skilled classified professionals and supports the predominantly part-time faculty who rely on stable, expert technical leadership—strengthening the instructional ecosystem that underpins equitable student outcomes.

Q12

How will this position improve the student experience at Cuyamaca College? How will the program or service area measure the impact of this position on the student experience?(200 words or less) (Rubric Criterion 4)

This position improves the student experience first and foremost by ensuring that required, transfer-aligned laboratory skills are delivered safely, consistently, and without interruption. Physics, Astronomy, and Earth Sciences currently serve over 800 students each spring and more than 2,500 students annually, across approximately 19–21 laboratory sections per semester. These courses necessarily involve lasers, radiation-producing equipment, pressurized systems, field instrumentation, GIS-supported data collection, aquaria and terraria, and extended evening or off-campus activities because these tools and environments are required learning outcomes for UC/CSU transfer and workforce preparation, not optional enhancements.

The department currently has a highly skilled technician who has the expertise to manage these safety and compliance responsibilities, but the current Science Laboratory Technician II classification does not authorize independent safety oversight, regulatory compliance responsibility, or training authority. As a result, essential health and safety functions are being performed without appropriate classification authority, placing both the employee and the institution at risk. There is no other classified position on campus—including in Chemistry or Biology—that can appropriately cross-cover Physics, Astronomy, or Earth Science safety needs within their own job descriptions. These disciplines involve distinct hazards, equipment, and regulatory requirements that cannot be informally shared.

As outlined in previously cited OSHA and California Title 8 regulations, instructional laboratories now require documented chemical hygiene, laser and radiation safety programs, biological systems management, training oversight, and corrective action authority. The Science Laboratory Technician III classification explicitly includes these responsibilities; the Tech II classification does not.

The consequences of misalignment are real. Within the same district, Grossmont College was cited and fined for improper handling and storage of radioactive materials in an instructional laboratory, demonstrating the institutional risk when safety responsibilities are not formally assigned to appropriately classified staff. Cuyamaca supports similar instructional hazards.

Aligning this position to Science Laboratory Technician III ensures that students can fully engage in authentic laboratory learning without compromising safety, compliance, or instructional continuity. Impact will be measured through documented regulatory compliance, reduced lab disruptions, stable section offerings, and improved persistence and completion in high-DFW STEM gateway courses.

Q13

Please confirm that you have discussed this classified position request with your dean/manager and that you understand that deans/managers will be providing feedback about the division's priorities and needs to help inform and may impact the prioritization process.

Yes, I have discussed this position request and its priority relative to other requests within the division/department with my dean/manager

Q14

Date of meeting (with dean/manager):

Date / Time

11/10/2025

Q15

In an effort for continued improvement of the Classified Position Request Process, the CHPC would like your feedback regarding the CHPC guidance and process for submitting new classified positions requests.

The CHPC guidance and request process is clear and organized, and it works well for documenting individual position needs in a given year. However, it is less effective for departments that have experienced sustained growth and long-term instructional change across multiple disciplines, as has been the case in Engineering & Physical Sciences.

Over the past decade, Physics, Astronomy, Earth Sciences, and Engineering have expanded enrollment, laboratory offerings, instructional modalities, and safety requirements. What has been most needed is a way to proactively identify and address cumulative growth and increasing technical complexity, rather than relying on repeated annual requests after capacity has already been exceeded. The current process does not provide a clear mechanism to capture cross-disciplinary lab support, shared infrastructure, evolving regulatory responsibilities, or the need to scale staffing as programs successfully grow.

These positions have consistently ranked highly when submitted, and the department has regularly requested additional lab staffing. At the same time, enrollment and laboratory demands have increased significantly, while classified support has not increased in proportion. This reflects a process gap rather than a lack of planning or advocacy.

The College may wish to consider adding operational tools or benchmarks—such as enrollment growth, number of labs supported, or changes in safety and compliance requirements—that help trigger earlier staffing review for high-demand programs. Such an approach would better align classified staffing with student success, safety, and institutional goals, and would support departments that are expanding access and serving students effectively.
