Algebra Resources

Arithmetic Operations

1.
$$a(b+c)=ab+ac$$

2.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$3. \quad \frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$$

4.
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Exponents and Radicals

$$5. \quad x^m x^n = x^{mn}$$

$$6. \quad \frac{x^m}{x^n} = x^{m-n}$$

$$7. \quad \left(x^m\right)^n = x^{mn}$$

8.
$$x^{-n} = \frac{1}{x^n}$$
 (Moving bases from the numerator to the denominator and vice versa causes the exponent

to change sign.)

$$9. \quad (xy)^n = x^n y^n$$

$$10. \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

11.
$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$12. \ x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$$

$$13. \ \sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$$

14.
$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

Factoring Special Polynomials

15.
$$x^2 + y^2 = prime$$

16.
$$x^2 - y^2 = (x + y)(x - y)$$

17.
$$x^3 \pm y^3 = (x \pm y)(x^2 \mp xy + y^2)$$

Binomial Theorem

18.
$$(x \pm y)^2 = x^2 \pm 2xy + y^2$$

19.
$$(x \pm y)^3 = x^3 \pm 2x^2y + 3xy^2 \pm y^3$$

20.
$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \dots + \binom{n}{k}x^{n-k}y^k + \dots + nxy^{n-1} + y^n$$
 where $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$.

Quadratic Formula

21. If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Inequalities and Absolute Value

- 22. If a < b and b < c, then a < c.
- 23. If a < b, then a+c < b+c.
- 24. If a < b and c > 0, then ac < cb.
- 25. If a < b and c < 0, then ac > cb. (Multiplying and dividing both sides of the inequality by a negative value changes the direction of the inequality.)
- 26. If a > 0, then
 - |x| = a means x = a or x = -a.
 - |x| < a means -a < x < a similarly $x \in (-a, a)$.
 - |x| > a means x > a or x < -a similarly $x \in (-\infty, -a) \cup (a, \infty)$.
- 27. If a < 0, then
 - |x| = a has no solution.
 - |x| < a has no solution.
 - |x| > a means $x \in \square$.

Finding the Inverse of a Function Algebraically

- 28. The *Inverse Function Algorithm* starts with a one-to-one function f(x).
 - STEP 1: Replace the function notation f(x) with y so the equation gives f(x) in terms of x.
 - **STEP 2:** Solve the equation for x.
 - STEP 3: If f is a decontextualized (abstract) function, you can interchange x and y, then replace y with $f^{-1}(x)$.

NOTE: If f is decontextualized (abstract - no units associated with the variables), many students prefer to swap x and y first (before STEP 2), solve for y, and then replace y with $f^{-1}(x)$.