{Principle Concepts on Matrices}

FADIA NAOUM

Definition:

A rectangular array of m x n numbers (real or complex) in the form of m horizontal lines (called rows) and n vertical lines (called columns), is called a <u>matrix</u> of order m by n, written as m x n matrix. Such an array is enclosed by [] or ().

Some Types of Matrices:

 $1 - \text{Row Matrix}, A = [a_{ij}]_{1 \text{ x n}}$

A = [1 2 4 5] is a row matrix of order 1 x 4.

2 - Column Matrix, $A = [a_{ij}]_{m \times 1}$

$$\mathbf{B} = \begin{bmatrix} 7 \\ -4 \\ 0 \end{bmatrix}$$
 is a column matrix of order 3 x 1.

3 - Zero or Null Matrix, $A = [a_{ij}]_{mxn}$ where, $a_{ij} = 0$

 $\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

is a zero matrix of order 3 x 2.

4 - Singleton Matrix, $A = [a_{ij}]_{mxn}$ where, m = n = 1

C = [5]

5 - Horizontal Matrix, $[a_{ij}]_{mxn}$ where, n > m,

$$H = \begin{bmatrix} 6 & -4 & 11 \\ 5 & 0 & -3 \end{bmatrix}$$
, H is matrix of order 2x3.

6 - Vertical Matrix, $[a_{ij}]_{mxn}$ where, m > n,

$$\mathbf{V} = \begin{bmatrix} 4 & 1\\ 13 & 9\\ -5 & 3 \end{bmatrix}$$

V is a matrix of order 3x2.

7 - Square Matrix, $[a_{ij}]_{mxn}$ where, m = n,

$$\mathbf{S} = \begin{bmatrix} 1 & 0 & 23 \\ -9 & 0.4 & 7 \\ 8 & 4 & 11 \end{bmatrix}, \quad \mathbf{S} \text{ is}$$

S is a matrix of order 3x3.

8 - Diagonal Matrix, $A = [a_{ij}]$ where, $a_{ij} = \{0, i \neq j\}$,

$$\mathbf{D} = \begin{bmatrix} 15 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 18 \end{bmatrix},$$

A is a matrix of order 3x3.

9 - Scalar Matrix, A = $[a_{ij}]_{mxn}$ where, $a_{ij} = \begin{cases} 0, i \neq j \\ k, i = j \end{cases}$,

 $\mathbf{K} = \begin{bmatrix} 19 & 0 & 0 \\ 0 & 19 & 0 \\ 0 & 0 & 19 \end{bmatrix}, \text{ K is a matrix of order 3x3.}$

10- Identity (Unit) Matrix, $A = [a_{ij}]_{m \times n}$ where, $a_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$,

 $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{OR} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ I is a matrix of order 2x2.}$

11- Triangular Matrices, Can be either upper triangular $(a_{ij} = 0, \text{ when } i > j)$ or lower triangular $(a_{ij} = 0 \text{ when } i < j)$,

	[1	60	3]			[-4	0	0]
U =	0	-4	0	, <mark>L</mark>	. =	1	23	0
	6	0	12			L15	-3	0 0.33

OPERATIONS ON MATRICES

The four "basic operations" on numbers are addition, subtraction, multiplication, and division. For matrices, there are basic operations with rows and the matrices themselves; the procedures that you can do with the rows of a matrix are *row-switching* and *multiplying row by a scalar*, while basically, the operations on matrices are, *add/subtract matrices*, *multiply a matrix by constant* (scalar multiple) and *multiplying two matrices*.

Row-switching:

For instance, given the matrix
$$A = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 1 & 2 & 3 & 5 \\ 0 & 1 & -2 & 4 \end{bmatrix}$$
.

You can switch the rows around to put the matrix into a nicer row arrangement, like this:

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix} \ ,$

When switching rows around, be careful to copy the entries correctly.

Multiplying row by a scalar:

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 0 \end{bmatrix}$$

$$2A = \begin{bmatrix} 2 \times 3 & 2 \times 5 \\ 2 \times 1 & 2 \times 0 \end{bmatrix}$$

$$2A = \begin{bmatrix} 6 & 10 \\ 2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 7 & 0 & 4 \\ 2 & -3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
Note: The notation 2A means to multiply matrix A by 2.
$$2A = \begin{bmatrix} 2 \times 7 & 2 \times 0 & 2 \times 4 \\ 2 \times 2 & 2 \times -3 & 2 \times 0 \end{bmatrix} = \begin{bmatrix} 14 & 0 & 8 \\ 4 & -6 & 0 \end{bmatrix}$$

Adding / subtracting two matrices:

2 2

final answer

-2

When you add / subtract two matrices they have to be of the same order

That is $A{\pm}B~$ must be, A_{mxn} and $~B_{mxn}$

 2×1 2×1 2×-1

Every entry of A is multiplied by 2.

$$\begin{bmatrix} -4 & 3 \\ 1 & 9 \end{bmatrix} + \begin{bmatrix} 6 & 1 \\ 8 & -2 \end{bmatrix} = \begin{bmatrix} 4+6 & 3+1 \\ 1+8 & 9+(-2) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 9 & 7 \end{bmatrix}$$

final answer

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 3 & 15 \end{bmatrix}$$

Multiplying two matrices:

When you multiply two matrices A and B they have to be of this type of order, A_{mxn} , B_{nxm}

Properties of Matrix Multiplication

Let A, B and C be three matrices, then

- $AB \neq BA$
- (AB)C = A(BC)
- A.(B+C) = A.B+A.C
- •

Use Matrices to Solve a System of Linear Equations:

One of the most use of matrices (especially for those a Math. 110/10 and 110 students), is to solve a system of linear questions, using the row operations given above.

Example 2

