\{Principle Concepts on Matrices\}

FADIA NAOUM

Definition:

A rectangular array of $\mathrm{m} x \mathrm{n}$ numbers (real or complex) in the form of m horizontal lines (called rows) and n vertical lines (called columns), is called a matrix of order m by n , written as $\mathrm{m} x \mathrm{n}$ matrix. Such an array is enclosed by [] or ().

Some Types of Matrices:

1 - Row Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{1 \times \mathrm{n}}$
$A=\left[\begin{array}{ll}1245\end{array}\right]$ is a row matrix of order 1×4.
2 - Column Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times 1}$
$B=\left[\begin{array}{c}7 \\ -4 \\ 0\end{array}\right]$ is a column matrix of order 3×1.
3 - Zero or Null Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{a}_{\mathrm{ij}}=0$
$\mathrm{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ is a zero matrix of order 3×2.
4 - Singleton Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{m}=\mathrm{n}=1$
$\mathrm{C}=[5]$
5 - Horizontal Matrix, $\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{n}>\mathrm{m}$,
$\mathrm{H}=\left[\begin{array}{ccc}6 & -4 & 11 \\ 5 & 0 & -3\end{array}\right], \mathrm{H}$ is matrix of order 2 x 3.
6 - Vertical Matrix, $\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{m}>\mathrm{n}$,
$\mathrm{V}=\left[\begin{array}{cc}4 & 1 \\ 13 & 9 \\ -5 & 3\end{array}\right], \quad \mathrm{V}$ is a matrix of order 3 x 2.
7 - Square Matrix, $\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{m}=\mathrm{n}$,
$S=\left[\begin{array}{ccc}1 & 0 & 23 \\ -9 & 0.4 & 7 \\ 8 & 4 & 11\end{array}\right], \quad S$ is a matrix of order 3×3.
8 - Diagonal Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ where, $\mathrm{a}_{\mathrm{ij}}=\{0, i \neq j\}$,
$\mathrm{D}=\left[\begin{array}{ccc}15 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 18\end{array}\right], \quad \mathrm{A}$ is a matrix of order 3×3.
9 - Scalar Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ where, $\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{ll}0, & i \neq j \\ k, & i=j\end{array}\right\}$,
$\mathrm{K}=\left[\begin{array}{ccc}19 & 0 & 0 \\ 0 & 19 & 0 \\ 0 & 0 & 19\end{array}\right], \mathrm{K}$ is a matrix of order 3 x 3.

10- Identity (Unit) Matrix, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ where, $\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{ll}1, & i=j \\ 0, & i \neq j\end{array}\right\}$,
$\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ OR $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, I is a matrix of order 2 x 2.
11- Triangular Matrices, Can be either upper triangular ($\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i}>\mathrm{j}$) or lower triangular ($\mathrm{a}_{\mathrm{ij}}=0$ when $\mathrm{i}<\mathrm{j}$),
$\mathrm{U}=\left[\begin{array}{ccc}1 & 60 & 3 \\ 0 & -4 & 0 \\ 0 & 0 & 12\end{array}\right], \quad \mathrm{L}=\left[\begin{array}{ccc}-4 & 0 & 0 \\ 1 & 23 & 0 \\ 15 & -3 & 0.33\end{array}\right]$

OPERATIONS ON MATRICES

The four "basic operations" on numbers are addition, subtraction, multiplication, and division. For matrices, there are basic operations with rows and the matrices themselves; the procedures that you can do with the rows of a matrix are row-switching and multiplying row by a scalar, while basically, the operations on matrices are, add/subtract matrices, multiply a matrix by constant (scalar multiple) and multiplying two matrices.

Row-switching:

For instance, given the matrix $\mathrm{A}=\left[\begin{array}{cccc}0 & 0 & 1 & 3 \\ 1 & 2 & 3 & 5 \\ 0 & 1 & -2 & 4\end{array}\right]$.
You can switch the rows around to put the matrix into a nicer row arrangement, like this:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 5 \\
0 & 1 & -2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

When switching rows around, be careful to copy the entries correctly.

Multiplying row by a scalar:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 5 \\
1 & 0
\end{array}\right] \\
& 2 A=\left[\begin{array}{ll}
2 \times 3 & 2 \times 5 \\
2 \times 1 & 2 \times 0
\end{array}\right] \\
& 2 A=\left[\begin{array}{cc}
6 & 10 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
7 & 0 & 4 \\
2 & -3 & 0 \\
1 & 1 & -1
\end{array}\right] \begin{array}{l}
\text { Note: The } \\
\text { notation } 2 A \\
\text { means to multiply } \\
\text { matrix } A \text { by } 2 .
\end{array} } \\
2 A= & {\left[\begin{array}{ccc}
2 \times 7 & 2 \times 0 & 2 \times 4 \\
2 \times 2 & 2 \times-3 & 2 \times 0 \\
2 \times 1 & 2 \times 1 & 2 \times-1
\end{array}\right]=\left[\begin{array}{ccc}
14 & 0 & 8 \\
4 & -6 & 0 \\
2 & 2 & -2
\end{array}\right] } \\
& \quad \begin{array}{l}
\text { Every entry of } A \\
\\
\text { is multiplied by } 2 .
\end{array} \text { final answer }
\end{aligned}
$$

Adding / subtracting two matrices:

When you add / subtract two matrices they have to be of the same order
That is $\mathrm{A} \pm \mathrm{B}$ must be, $\mathrm{A}_{\mathrm{mxn}}$ and $\mathrm{B}_{\mathrm{mxn}}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-4 & 3 \\
1 & 9
\end{array}\right]+\left[\begin{array}{cc}
6 & 1 \\
8 & -2
\end{array}\right]=\left[\begin{array}{cc}
-4+6 & 3+1 \\
1+8 & 9+(-2)
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
9 & 7
\end{array}\right]} \\
& \text { final answer }
\end{aligned}
$$

$$
\left[\begin{array}{ll}
3 & 8 \\
4 & 6
\end{array}\right]-\left[\begin{array}{cc}
4 & 0 \\
1 & -9
\end{array}\right]=\left[\begin{array}{cc}
-1 & 8 \\
3 & 15
\end{array}\right]
$$

Multiplying two matrices:

When you multiply two matrices A and B they have to be of this type of order, $A_{m \times n}, B_{n x m}$

Properties of Matrix Multiplication

Let A, B and C be three matrices, then

- $A B \neq B A$
- $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
- $\mathrm{A} .(\mathrm{B}+\mathrm{C})=\mathrm{A} . \mathrm{B}+\mathrm{A} . \mathrm{C}$
-

Use Matrices to Solve a System of Linear Equations:

One of the most use of matrices (especially for those a Math. 110/10 and 110 students), is to solve a system of linear questions, using the row operations given above.

Example 1

Solve

$$
\begin{aligned}
& x+3 y=5 \\
& 2 x-y=3
\end{aligned}
$$

1. Augmented system

2. Eliminate 2 in $2^{\text {nd }}$ row by row operation
3. Divide row two by -7 to obtain a coefficient of 1 .
. Eliminate the 3 in first $\left[\begin{array}{ll|l}1 & 3 & 5 \\ 0 & 1 & 1\end{array}\right]$ row, second position

$$
-3 R_{2}+R_{1} \rightarrow R_{1} \rightarrow
$$

. Read solution from matrix

$$
\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \rightarrow x=2, y=1 ;(2,1)
$$

Example 2

Solving Systems Using Row

Operations

$$
\begin{aligned}
& 3 x+y=5 \\
& -3 x+6 y=9
\end{aligned} \quad\left[\begin{array}{llll}
3 & 1 & \vdots & 5 \\
-3 & 6 & \vdots & 9
\end{array}\right]
$$

$$
\begin{aligned}
& 3 x+y=5 \\
& 7 y=14
\end{aligned} \quad\left[\begin{array}{llll}
3 & 1 & \vdots & 5 \\
0 & 7 & \vdots & 14
\end{array}\right]
$$

$$
\begin{aligned}
& 3 x=5 \\
& y=2
\end{aligned} \quad\left[\begin{array}{llll}
3 & 0 & \vdots & 5 \\
0 & 1 & \vdots & 2
\end{array}\right]
$$

$$
\begin{aligned}
& x=1 \\
& y=2
\end{aligned} \quad\left[\begin{array}{llll}
1 & 0 & \vdots & 1 \\
0 & 1 & \vdots & 2
\end{array}\right] \quad \text { What's special about this matrix? }
$$

