Solving Linear Inequalities

Farah Dawood

Some Application of Inequalities

Inequalities are used more often in real life than equalities:

* Businesses use inequalities to control inventory, plan production lines, produce pricing models, and for shipping.
* Linear programming is a branch of mathematics that uses systems of linear inequalities to solve real-world problems.
* Financial occupations often require the use of linear inequalities such as accountants, auditors, budget analysts and insurance underwriters to determine pricing and set budgets.

Inequality Symbols

Equality and Inequality

$=$ equal

greater than
not equal
less
than

What is a linear Inequality ?

- Linear inequality is an inequality which involves a linear function (with first power).
- Linear inequality contains one of the symbols of inequality
- The solution of a linear inequality in two variable like $\mathrm{Ax}+\mathrm{By}>\mathrm{C}$ is an ordered pair (x, y) that make an inequality true.

Solving Linear Inequalities For One Variable

- Solve the inequality as you would an equation which means that "whatever you do to one side, you must do to the other side".
- If you multiply or divide by a negative number, REVERSE the inequality symbol.
- We can write the answer in interval notation.

Steps for Graphing Solution on Number Line

- Use an open circle on the graph if your inequality symbol is greater than or less than.
- Use a closed circle on the graph if your inequality symbol is greater than or equal to OR less than or equal to.
- Arrow will point to the left if the inequality symbol is less than.
- Arrow will point to the right if the inequality symbol is greater than.

Example

$5-x<4$	Original Problem
$5-5-x<4-5$	Subtract 5 from BOTH sides $\frac{-x}{-1}<\frac{-1}{-1}$
Divide by -1 to make positive. You MUST REVERSE the SIGN since you are dividing by a negative number.	
Check: $5-x<4$ $5-2<4$ $3<4$	Interval Notation $(1, \infty)$

How to Solve and Graph a linear Inequality for T Variable:

- Rearrange the equation so " y " is on the left and everything else on the right.
- Plot the " $\mathbf{y}=$ " line (make it a solid line for $\mathbf{y} \leq$ or $\mathbf{y} \geq$, and a dashed line for $\mathbf{y}<$ or $\mathbf{y}>$).
- Shade above the line for a "greater than" ($\mathbf{y}>$ or $\mathbf{y} \geq$) or below the line for a "less than" ($\mathbf{y}<$ or $\mathbf{y} \leq$). <><><><><><><><><><><><><><><><><><><><><><><><><><><><> <><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Example $\quad 2 y-x \leq 6$

We will need to rearrange this one so " y " is on its own on the left:

* Start with: $2 y-x \leq 6$
* Add x to both sides: $2 y \leq x+6$
* Divide all by 2: $y \leq x / 2+3$

Plot the line $y=x / 2+3$ (as a solid line because \leq includes equal to), then shade the area below because y is less than or equal.

