Solving Systems of Equations with Three Variables

By: Janeat Toma

Describing Solutions to a System of Three Equations in Three Variables

- $A x+B y+C z=D$
- Each equation defines a flat plane that can be graphed on a 3D $x-y-z$ graph.
- The solution is when these three planes cross a single point.
- Another type of solution has an infinite number of points: a three dimensional straight line.
- To solve for single point solutions, we can use Elimination or Substitution.
- No solution occurs in some systems such as parallel or triangular planes.

Visualizing Solutions to a System of Three Equations in Three Variables

Solving a System of Equations Algebraically

To solve a system of three equations in three variables, we will be using the linear combination method. This time we will take two equations at a time to eliminate one variable and using the resulting equations in two variables to eliminate a second variable and solve for the third.

Example:

$$
x-3 y+3 z=-4
$$

$2 x+3 y-z=15$
$4 x-3 y-z=19$

1) Pair equations to eliminate

Solution:
1 variable
$x-3 y+3 z=-4 \quad 2 x+3 y-z=15$

$2 x+3 y-z=15$
$3 x+2 z=11$

\& 6 x-2 z=34\end{aligned}\)
2) Solve new system
$3 x+2 z=11$

$6 x-2 z=34$
$9 x=45$

$x=5$
\downarrow
$3 x+2 z=11$ $15+2 z=11$
$2 z=-4$
$z=-2$
$2 x+3 y-z=15$
$2(5)+3 y-(-2)=15$
$y=1$
Solution is $(5,1,-2)$

Identifying Inconsistent Systems and Dependent Equations

- When the equations in a system of two equations with two variables are dependent, the system has infinitely many solutions
- This is NOT always true for systems of three equations with three variables.
- A system can have dependent equations and still be inconsistent in this case.
- The illustration demonstrates the different possibilities

An inconsistent system

Using a Matrix to Solve a System of Equations

- Step 1: Write the coefficients in a matrix using a vertical line to represent equals signs.
- Step 2: Find the inverse of the matrix that's left of the equals signs.
- Step 3: Multiply the inverse matrix by the part of the matrix that is right of the equals sign.

Example of Using a Matrix

$$
\begin{aligned}
& x+y-z=-2 \\
& 2 x-y+z=5 \\
& -x+2 y+2 z=1
\end{aligned}
$$

$\left[\begin{array}{ccc|cc}1 & 1 & -1 & -2 \\ 2 & -1 & 1 & 5 \\ -1 & 2 & 2 & 1\end{array}\right]$

$\left[\begin{array}{ccc|cc}1 & 1 & -1 & -2 \\ 2 & -1 & 1 & 5 \\ 0 & 3 & 1 & -1\end{array}\right]$

Example of Using a Matrix Continued

From the third row, $4 z=8$.
To solve for z, divide both sides by $4, z=2$.
From the second row, $-3 y+3 z=9$. Substitute $z=2,-3 y+6=9$. Subtract 6 on both sides $=-3 y=3$.
Divide -3 on both sides, $\mathrm{y}=-1$.
From the first row, $x+y-z=-2$. Solving for x, substitue $y=-1$ and $z=2$.
$x-1-2=-2$.
$x-3=-2$. Add three to both sides, $x=1$.
The solution is $(1,-1,2)$.

